Deposition of binary and ternary oxide thin films of trivalent metals by atomic layer epitaxy

Author
Minna Nieminen
Year
2001
Abstract & Cover

The atomic layer epitaxy (ALE) technique was used to grow thin films of binary metal oxides Al2O3, Ga2O3 and La2O3, and ternary metal oxides LaNiO3, LaCoO3, LaAlO3, and LaGaO3. In addition, another type of mixed-oxide, viz. phosphorus-doped Al2O3 was studied. The binary oxides Ga2O3 and La2O3 and all the ternary oxides were deposited by the ALE method for the first time. New ALE processes were developed for the undoped and doped Al2O3 films. The thin films were characterized by a wide range of methods for structural and surface analysis, including XRD, FTIR, XPS, AFM, XRF, RBS, TOF-ERDA, and SIMS. A review of previous work on these trivalent metal oxide thin films is presented by way of background. The Al2O3 and Ga2O3 films deposited from metal beta-diketonates and ozone were of high quality: stoichiometric, uniform, dense, and free of any significant contamination. However, the La2O3 films contained an excess of oxygen, due to the carbonate-type impurity that was detected. All Al2O3 and Ga2O3 films were amorphous, but polycrystalline, cubic La2O3 was formed at temperatures above 300 oC. Hexagonal La2O3 film was obtained by annealing the as-deposited amorphous and cubic La2O3 films. Simultaneously, the carbon content in the films was reduced. In contrast to the stable Al2O3 and Ga2O3 films, the cubic and hexagonal La2O3 films were chemically unstable and reacted with ambient air, transforming to LaO(OH) and La(OH)3, respectively. The perovskite-type oxides LaNiO3, LaCoO3, LaAlO3, and LaGaO3 were deposited using metal beta-diketonates and ozone as precursors. No optimal ALE process could be demonstrated for the LaNiO3 and LaCoO3 films, which were non-uniform in thickness and either consisted of separate oxide layers or contained an excess of the transition metal. The LaAlO3 and LaGaO3 film growth, in contrast, was well-controlled yielding stoichiometric, uniform, and smooth films, demonstrating the potential of the ALE technique for producing the more complex ternary oxide films. All the as-deposited ternary oxide films were amorphous but crystallized with cubic structure when post-annealed ex situ. After annealing high-quality, epitaxial LaAlO3 and LaGaO3 films were obtained on lattice-matched perovskite-type substrates while randomly or slightly oriented films were obtained on non-lattice matched substrates. The films were relatively pure and only small amounts of common impurities, carbon and hydrogen, were detected. Phosphorus-doped Al2O3 films were deposited from AlCl3, P2O5 or trimethylphosphate, and water. The phosphorus content could be controlled by the phosphorus doping ratio: when the P/Al atomic ratio was below 1.0, the films consisted of both Al2O3 and AlPO4, whereas above that they contained predominantly AlPO4. Phosphorus was uniformly distributed when the phosphorus content exceeded 5 at.%, and it was enriched on the film/substrate interface when the content was lower. 

Source of Information
FinALD40 exhibition material, http://www.aldcoe.fi/events/finald40.pdf
University
Helsinki University of Technology, Department of Chemical Technology, Laboratory of Inorganic and Analytical Chemistry
(Espoo, Finland)
External Link
Read Thesis
LinkedIn
linkedin invite